6,562 research outputs found

    Mathematics of random growing interfaces

    Full text link
    We establish a thermodynamic limit and Gaussian fluctuations for the height and surface width of the random interface formed by the deposition of particles on surfaces. The results hold for the standard ballistic deposition model as well as the surface relaxation model in the off-lattice setting. The results are proved with the aid of general limit theorems for stabilizing functionals of marked Poisson point processes.Comment: 12 page

    Growing Perfect Decagonal Quasicrystals by Local Rules

    Full text link
    A local growth algorithm for a decagonal quasicrystal is presented. We show that a perfect Penrose tiling (PPT) layer can be grown on a decapod tiling layer by a three dimensional (3D) local rule growth. Once a PPT layer begins to form on the upper layer, successive 2D PPT layers can be added on top resulting in a perfect decagonal quasicrystalline structure in bulk with a point defect only on the bottom surface layer. Our growth rule shows that an ideal quasicrystal structure can be constructed by a local growth algorithm in 3D, contrary to the necessity of non-local information for a 2D PPT growth.Comment: 4pages, 2figure

    Radiating black hole solutions in Einstein-Gauss-Bonnet gravity

    Full text link
    In this paper, we find some new exact solutions to the Einstein-Gauss-Bonnet equations. First, we prove a theorem which allows us to find a large family of solutions to the Einstein-Gauss-Bonnet gravity in nn-dimensions. This family of solutions represents dynamic black holes and contains, as particular cases, not only the recently found Vaidya-Einstein-Gauss-Bonnet black hole, but also other physical solutions that we think are new, such as, the Gauss-Bonnet versions of the Bonnor-Vaidya(de Sitter/anti-de Sitter) solution, a global monopole and the Husain black holes. We also present a more general version of this theorem in which less restrictive conditions on the energy-momentum tensor are imposed. As an application of this theorem, we present the exact solution describing a black hole radiating a charged null fluid in a Born-Infeld nonlinear electrodynamics

    One loop superstring effective actions and N=8 supergravity

    Full text link
    In a previous article we have shown the existence of a new independent R^4 term, at one loop, in the type IIA and heterotic effective actions, after reduction to four dimensions, besides the usual square of the Bel-Robinson tensor. It had been shown that such a term could not be directly supersymmetrized, but we showed that was possible after coupling to a scalar chiral multiplet. In this article we study the extended (N=8) supersymmetrization of this term, where no other coupling can be taken. We show that such supersymmetrization cannot be achieved at the linearized level. This is in conflict with the theory one gets after toroidal compactification of type II superstrings being N=8 supersymmetric. We interpret this result in face of the recent claim that perturbative supergravity cannot be decoupled from string theory in d>=4, and N=8, d=4 supergravity is in the swampland.Comment: 28 pages, no figure

    Strict inequalities of critical values in continuum percolation

    Full text link
    We consider the supercritical finite-range random connection model where the points x,yx,y of a homogeneous planar Poisson process are connected with probability f(yx)f(|y-x|) for a given ff. Performing percolation on the resulting graph, we show that the critical probabilities for site and bond percolation satisfy the strict inequality pcsite>pcbondp_c^{\rm site} > p_c^{\rm bond}. We also show that reducing the connection function ff strictly increases the critical Poisson intensity. Finally, we deduce that performing a spreading transformation on ff (thereby allowing connections over greater distances but with lower probabilities, leaving average degrees unchanged) {\em strictly} reduces the critical Poisson intensity. This is of practical relevance, indicating that in many real networks it is in principle possible to exploit the presence of spread-out, long range connections, to achieve connectivity at a strictly lower density value.Comment: 38 pages, 8 figure

    On a thermodynamically consistent modification of the Becker-Doering equations

    Get PDF
    Recently, Dreyer and Duderstadt have proposed a modification of the Becker--Doering cluster equations which now have a nonconvex Lyapunov function. We start with existence and uniqueness results for the modified equations. Next we derive an explicit criterion for the existence of equilibrium states and solve the minimization problem for the Lyapunov function. Finally, we discuss the long time behavior in the case that equilibrium solutions do exist

    Information Equation of State

    Full text link
    Landauer's principle is applied to information in the universe. Once stars began forming, the increasing proportion of matter at high stellar temperatures compensated for the expanding universe to provide a near constant information energy density. The information equation of state was close to the dark energy value, w = -1, for a wide range of redshifts, 10> z >0.8, over one half of cosmic time. A reasonable universe information bit content of only 10^87 bits is sufficient for information energy to account for all dark energy. A time varying equation of state with a direct link between dark energy and matter, and linked to star formation in particular, is clearly relevant to the cosmic coincidence problem.In answering the "Why now?" question we wonder "What next?" as we expect the information equation of state to tend towards w = 0 in the future.Comment: 10 pages, 2 figure

    Degree Correlations in Random Geometric Graphs

    Full text link
    Spatially embedded networks are important in several disciplines. The prototypical spatial net- work we assume is the Random Geometric Graph of which many properties are known. Here we present new results for the two-point degree correlation function in terms of the clustering coefficient of the graphs for two-dimensional space in particular, with extensions to arbitrary finite dimension

    Spacetime structure of static solutions in Gauss-Bonnet gravity: charged case

    Full text link
    We have studied spacetime structures of static solutions in the nn-dimensional Einstein-Gauss-Bonnet-Maxwell-Λ\Lambda system. Especially we focus on effects of the Maxwell charge. We assume that the Gauss-Bonnet coefficient α\alpha is non-negative and 4α~/214{\tilde \alpha}/\ell^2\leq 1 in order to define the relevant vacuum state. Solutions have the (n2)(n-2)-dimensional Euclidean sub-manifold whose curvature is k=1, 0k=1,~0, or -1. In Gauss-Bonnet gravity, solutions are classified into plus and minus branches. In the plus branch all solutions have the same asymptotic structure as those in general relativity with a negative cosmological constant. The charge affects a central region of the spacetime. A branch singularity appears at the finite radius r=rb>0r=r_b>0 for any mass parameter. There the Kretschmann invariant behaves as O((rrb)3)O((r-r_b)^{-3}), which is much milder than divergent behavior of the central singularity in general relativity O(r4(n2))O(r^{-4(n-2)}). Some charged black hole solutions have no inner horizon in Gauss-Bonnet gravity. Although there is a maximum mass for black hole solutions in the plus branch for k=1k=-1 in the neutral case, no such maximum exists in the charged case. The solutions in the plus branch with k=1k=-1 and n6n\geq6 have an "inner" black hole, and inner and the "outer" black hole horizons. Considering the evolution of black holes, we briefly discuss a classical discontinuous transition from one black hole spacetime to another.Comment: 20 pages, 10 figure

    Asymptotic behavior of the generalized Becker-D\"oring equations for general initial data

    Full text link
    We prove the following asymptotic behavior for solutions to the generalized Becker-D\"oring system for general initial data: under a detailed balance assumption and in situations where density is conserved in time, there is a critical density ρs\rho_s such that solutions with an initial density ρ0ρs\rho_0 \leq \rho_s converge strongly to the equilibrium with density ρ0\rho_0, and solutions with initial density ρ0>ρs\rho_0 > \rho_s converge (in a weak sense) to the equilibrium with density ρs\rho_s. This extends the previous knowledge that this behavior happens under more restrictive conditions on the initial data. The main tool is a new estimate on the tail of solutions with density below the critical density
    corecore